
9/21/2015

1

Writing good C++14

Bjarne Stroustrup
Morgan Stanley, Columbia University

www.stroustrup.com

The big question

• “What is good modern C++?”
• Many people want to write ”Modern C++”

• Guidelines project
• Produce a useful answer

• Enable many people to use that answer
• For most programmers, not just language experts

• Please help!

Stroustrup - Guidelines - CppCon'15 4

9/21/2015

2

The problem and the opportunity

• We have a great modern language
• C++11 (good)

• -> C++14 (better)

• -> C++17 (much better still, I hope)

• Technical specifications

• Shipping

• in wide-spread production work

• and more facilities well in the works

• C++1*

• is easier to write and maintain

• runs faster

• can express more than older C++

• with less code

Stroustrup - Guidelines - CppCon'15 5

The problem and the opportunity

• Many people
• Use C++ in archaic or foreign styles
• Get lost in details
• Are obsessed with language-technical details

Doctor, doctor, it hurts when I do X!!!

So don’t do X

• “Within C++ is a smaller, simpler, safer language struggling to get out”
• Code can be simpler
• as efficient as ever
• as expressive as ever

Stroustrup - Guidelines - CppCon'15 6

9/21/2015

3

A smaller, simpler C++

• Let’s get it out
• Now!

• Without inventing a new language

• 100% compatibility – compile with current compilers

• Coding guidelines
• Supported by a “guidelines support library” (GSL)

• Supported by analysis tools

• Don’t sacrifice
• Generality

• Performance

• Simplicity

• Portability across platforms

Stroustrup - Guidelines - CppCon'15 7

A smaller, simpler C++

• I think we can do it
• I can’t do it alone

• No individual can

• No single company can

• Please help!

Stroustrup - Guidelines - CppCon'15 8

9/21/2015

4

Initial work (still incomplete)

• I describe significant initial work
• Microsoft (Herb Sutter and friends)
• Morgan Stanley (Bjarne Stroustrup and friends)
• CERN (Axel Naumann and friends)

• Available
• Core guidelines (now)
• Guidelines support library (now; Microsoft, GCC, Clang; Windows, Linux, Mac)

• Analysis tool (Microsoft in October; ports later (November?))
• MIT License

• Related CppCon talks
• Herb Sutter: Writing Good C++14 By Default (Tuesday)
• Gabriel Dos Reis: Modules (Tuesday)
• Gabriel Dos Reis: Contracts (Wednesday)
• Neil MacIntosh: Static analysis (Wednesday)
• Neil MacIntosh: array_view, string_view, etc. (Wednesday)

Stroustrup - Guidelines - CppCon'15 9

We all hate coding rules*†

• Rules are (usually)
• Written to prevent misuse by poor programmers

• “don’t do this and don’t do that”

• Written by people with weak experience with C++
• At the start of an organization’s use of C++

• Rules (usually) focus on
• “layout and naming”
• Restrictions on language feature use
• Not on programming principles

• Rules (usually) are full of bad advice
• Write “pseudo-Java” (as some people thought was cool in 1990s)
• Write “C with Classes” (as we did in 1986)
• Write C (as we did in 1978)
• …

Stroustrup - Guidelines - CppCon'15 10

*Usual caveats

†and thanks

9/21/2015

5

Coding rules*

• Are outdated
• Become a drag of their users

• Are specialized
• but used outside their intended domain

• Are not understood by their users
• Enforced by dictate: Do this or else!
• Require detailed language-lawyer knowledge to follow

• Are not well supported by tools
• Platform dependencies
• Compiler dependencies
• Expensive

• Do not provide guidance
• Telling what not to do is not enough

Stroustrup - Guidelines - CppCon'15 11

*Usual caveats

Coding guidelines
• Let’s build a good set!

• Comprehensive
• Browsable
• Supported by tools (from many sources)
• Suitable for gradual adoption

• For modern C++
• Compatibility and legacy code be damned! (initially)

• Prescriptive
• Not punitive

• Teachable
• Rationales and examples

• Flexible
• Adaptable to many communities and tasks

• Non-proprietary
• But assembled with taste and responsivenessStroustrup - Guidelines - CppCon'15 12

• We aim to offer guidance
• What is good modern C++?

• Confused, backwards-looking
teaching is a big problem

9/21/2015

6

High-level rules

• Provide a conceptual framework
• Primarily for humans

• Many can’t be checked completely or consistently

• P.1: Express ideas directly in code
• P.2: Write in ISO Standard C++
• P.3: Express intent
• P.4: Ideally, a program should be statically type safe
• P.5: Prefer compile-time checking to run-time checking
• P.6: What cannot be checked at compile time should be checkable at run time
• P.7: Catch run-time errors early
• P.8: Don't leak any resource
• P.9: Don't waste time or space

Stroustrup - Guidelines - CppCon'15 13

Lower-level rules

• Provide enforcement
• Some complete
• Some heuristics
• Many rely on static analysis
• Some beyond our current tools
• Often easy to check “mechanically”

• Primarily for tools
• To allow specific feedback to programmer

• Help to unify style

• Not minimal or orthogonal

• F.16: Use T* or owner<T*> to designate a single object
• C.49: Prefer initialization to assignment in constructors
• ES.20: Always initialize an object

Stroustrup - Guidelines - CppCon'15 14

9/21/2015

7

The structure of a rule

Stroustrup - Guidelines - CppCon'15 15

• The rule itself - e.g., no naked `new`

• Reference number - e.g., C.7 (the 7th rule related to classes).

• Reason (rationale) - because programmers find it hard to follow rules they don’t understand

• Example - because rules are hard to understand in the abstract; can be positive or negative

• Alternative - for "don’t do this" rules

• Exception - we prefer simple general rules. However, many rules apply widely, but not universally

• Enforcement - ideas about how the rule might be checked "mechanically"

• See also - references to related rules and/or further discussion (in this document or elsewhere)

• Note (comments) - something that needs saying that doesn't fit the other classifications

• Discussion - references to more extensive rationale and/or examples placed outside the main lists
of rules

• Simple sub-setting doesn’t work
• We need the low-level/tricky/close-to-the-hardware/error-prone/expert-only features

• For implementing higher-level facilities efficiently
• Many low-level features can be used well

• We need the standard library

• Extend language with a few abstractions
• Use the STL
• Add a small library (the GSL)

• No new language features
• Messy/dangerous/low-level features can be used to implement the GSL

• Then subset

• What we want is “C++ on steroids”
• Simple, safe, flexible, and fast
• Not a neutered subset

Subset of superset

Stroustrup - Guidelines - CppCon'15 16

C++
GSL

Don’t use

STL

Use:

9/21/2015

8

Some rules rely on libraries

• The ISO C++ standard library
• E.g., vector<T> and unique_ptr<T>

• The Guideline Support Library
• E.g., array_view<T> and not_null<T>

• Some rules using the GSL
• I.11: Never transfer ownership by a raw pointer (T*)

• Use an ownership pointer (e.g. unique_ptr<T>) or owner<T*>

• I.12: Declare a pointer that may not be the nullptr as not_null
• E.g., not_null<int*>

• I.13 Do not pass an array as a single pointer
• Use a handle type, e.g., vector<T> or array_view<T>

Stroustrup - Guidelines - CppCon'15 17

GSL

STL

Double our productivity

• “Imitate experienced programmers”
• Most programmer don’t know what “everybody knows”

• Eliminate whole classes of errors
• Fewer crashes and security violations

• Simplify
• Simplicity aids maintenance

• Consistent style speeds up learning

• Guide people away from obscure corners and exotic technique

• Emphasis on avoiding waste improves performance

• Separate rules for exceptional needs

• Do not compromise performance

Stroustrup - Guidelines - CppCon'15 18

9/21/2015

9

Have you gone mad? (no)

• We attack the most common and the most serious sources of errors
• I hate debugging

• We eliminate whole classes of errors
• Eliminate resource leaks

• Without loss of performance

• Eliminate dangling pointers

• Without loss of performance

• Eliminate out-of-range access

• With minimal cost

• Tool support is essential
• Static analysis

• Support library (tiny)

• Reinforce the type system
Stroustrup - Guidelines - CppCon'15 19

Core Rules

• Some people will not be able to apply all rules
• At least initially

• Gradual adoption will be very common

• Many people will need additional rules
• For specific needs

• We initially focus on the core rules
• The ones we hope that everyone eventually could benefit from

• The core of the core
• No leaks

• No dangling pointers

• No type violations through pointers

Stroustrup - Guidelines - CppCon'15 20

9/21/2015

10

No resource leaks

• We know how
• Root every object in a scope

• vector<T>

• string

• ifstream

• unique_ptr<T>

• shared_ptr<T>

• RAII
• “No naked new”

• “No naked delete”

Stroustrup - Guidelines - CppCon'15 21

Dangling pointers – the problem

• One nasty variant of the problem

void f(X* p)

{

// …

delete p; // looks innocent enough

}

void g()

{

X* q = new X; // looks innocent enough

f(q);

// … do a lot of work here …

q->use(); // Ouch! Read/scramble random memory

} Stroustrup - Guidelines - CppCon'15 22

9/21/2015

11

Dangling pointers

• We must eliminate dangling pointers
• Or type safety is compromised

• Or memory safety is compromised

• Or resource safety is compromised

• Eliminated by a combination of rules
• Distinguish owners from non-owners

• Assume raw pointers to be non-owners

• Catch all attempts for a pointer to “escape” into a scope
enclosing its owner’s scope

• return, throw, out-parameters, long-lived containers, …

• Something that holds an owner is an owner
• E.g. vector<owner<int*>>, owner<int*>[], …

Stroustrup - Guidelines - CppCon'15 23

Owners and pointers

• Every object has one owner

• An object can have many pointers to it

• No pointer can outlive the scope of the owner it points to

• An owner is responsible for owners in its object

Stroustrup - Guidelines - CppCon'15 24

owner

Object

pointer

pointer

pointer

Call stack

Object

owner

• For an object on the free store the owner is a pointer

• For an object on the stack the owner itself

• For a static object the owner is itself

9/21/2015

12

Dangling pointers

• Ensure that no pointer outlives the object it points to

void f(X* p)

{

// …

delete p; // bad: delete non-owner

}

void g()

{

X* q = new X; // bad: assign object to non-owner

f(q);

// … do a lot of work here …

q->use(); // Make sure we never get here

} Stroustrup - Guidelines - CppCon'15 25

How do we represent ownership?

• High-level: Use an ownership abstraction

• Low-level: mark owning pointers owner
• An owner must be deleted or passed to another owner
• A non-owner may not be deleted

• Note
• I talk about pointers
• What I say applies to anything that refers to an object

• References
• Containers of pointers
• Smart pointers
• ..

Stroustrup - Guidelines - CppCon'15 26

9/21/2015

13

How do we represent ownership

• Mark an owning T*: owner<T*>
• Initial idea

• owner<T*> would hold a T* and an “owner bit”
• Costly: bit manipulation
• Not ABI compatible
• Not C compatible

• So our GSL owner is
• A handle for static analysis
• Documentation
• Not a type with it’s own operations
• Cost free: No run-time cost (time or space)
• ABI compatible
• template<typename T> owner = T;

Stroustrup - Guidelines - CppCon'15 27

GSL: owner<T>

• How do we implement ownership abstractions?
template<SemiRegular T>

class vector {

owner<T*> elem; // the anchors the allocated memory

T* space; // just a position indicator

T* end; // just a position indicator

// …

};

• owner<T*> is just an alias for T*

Stroustrup - Guidelines - CppCon'15 28

9/21/2015

14

GSL: owner<T>

• How about code we cannot change?

void foo(owner<int*>); // foo requires an owner

void f(owner<int*> p, int* q, owner<int*> p2, int* q2)
{

foo(p); // OK: transfer ownership
foo(q); // bad: q is not an owner
delete p2; // necessary
delete q2; // bad: not an owner

}

• A static analysis tool can tell us where our code mishandles ownership

Stroustrup - Guidelines - CppCon'15 29

owner is a low-level mechanism

• Use proper ownership abstractions
• E.g., unique_ptr and vector

• Implemented using owner

• owner is intended to simplify static analysis
• owners in application code is a sign of a problem

• Usually, C-style interfaces

Stroustrup - Guidelines - CppCon'15 30

9/21/2015

15

How to avoid/catch dangling pointers

• Rules (giving pointer safety):
• Don’t transfer to pointer to a local to where it could be accessed by a caller

• A pointer passed as an argument can be passed back as a result

• A pointer obtained from new can be passed back as a result as an owner

int* f(int* p)

{

int x = 4;

return &x; // No! would point to destroyed stack frame

return new int{7}; // OK (sort of: doesn’t dangle, but returns an owner as an int*)

return p; // OK: came from caller

}

Stroustrup - Guidelines - CppCon'15 31

How to avoid/catch dangling pointers

• It’s not just pointers
• All ways of “escaping”

• return, throw, place in long-lived container, …

• Same for containers of pointers

• E.g. vector<int*>, unique_ptr<int>, iterators, built-in arrays, …

• Same for references

• Never let a “pointer” point to an out-of-scope object

Stroustrup - Guidelines - CppCon'15 32

9/21/2015

16

How to avoid/catch dangling pointers

• Classify pointers according to ownership
vector<int*> f(int* p)

{

int x = 4;

int* q = new int{7};

vector<int*> res = {p, &x, q}; // Bad: { unknown, pointer to local, owner }

return res;

}

• Don’t mix different ownerships in an array

• Don’t let different return statements of a function mix ownership

Stroustrup - Guidelines - CppCon'15 33

How to avoid/catch dangling pointers

• Try to be explicit about ownership
vector<int*> f(int* p)
{

int x = 4;
owner<int*> q = new int{7};
vector<int*> res = {p, &x, q}; // Bad: { unknown, pointer to local, owner }
vector<owner<int*>> r2 = {p, &x, q}; // Bad: { unknown, pointer to local, owner }
return res;

}

• Some convoluted code cannot be represented in a statically type-safe manner
• Avoid such code
• If you really need it, encapsulate it in an expression that include run-time representation of

ownership (pointer, ownership bit)

Stroustrup - Guidelines - CppCon'15 34

9/21/2015

17

Other problems

• Other ways of misusing pointers
• Range errors: array_view<T>

• nullptr dereferencing: not_null<T>

• Wasteful ways of addressing pointer problems
• Misuse of smart pointers

• Other ways of breaking the type system (beyond the scope of this talk)

• Unions

• Casts

• “Just test everywhere at run time” is not an acceptable answer
• Hygiene rules

• Static analysis

• Run-time checks Stroustrup - Guidelines - CppCon'15 35

GSL - array_view<T>

• Common style
void f(int* p, int n) // what is n? (How would a tool know?)

{

p[7] = 9; // OK?

for (int i=0; i<n; ++i) p[i] = 7; // OK?

}

• Better
void f(array_view<int> a)

{

a[7] = 9; // OK? Checkable against a.size()

for (int& x : a) x = 7; // OK

}

Stroustrup - Guidelines - CppCon'15 36

9/21/2015

18

GSL - array_view<T>

• Common style
void f(int* p, int n);

int a[100];

// …

f(a,100);

f(a,1000); // likely disaster

Stroustrup - Guidelines - CppCon'15 37

• Better

void f(array_view<int> a)

int a[100];

// …

f(array_view<int>{a});

f(a);

f({a,1000}); // easily checkable

• “Make simple things simple”
• Simpler than “old style”
• Shorter
• At least as fast
• Sometimes using the GSL
• Sometimes using the STL

nullptr problems

• Mixing nullptr and pointers to objects
• Causes confusion
• Requires (systematic) checking

• Caller
void f(char*);

f(nullptr); // OK?

• Implementer
void f(char* p)
{

if (p==nullptr) // necessary?
// …

}

• Can you trust the documentation?

• Compilers don’t read manuals, or comments

• Complexity, errors, and/or run-time cost
Stroustrup - Guidelines - CppCon'15 38

9/21/2015

19

GSL - not_null<T>

• Caller
void f(not_null<char*>);

f(nullptr); // Obvious error: caught be static analysis

char* p = nullptr;

f(p); // Constructor for not_null can catch the error

• Implementer
void f(not_null<char*> p)

{

// if (p==nullptr) // not necessary

// …

}

Stroustrup - Guidelines - CppCon'15 39

GSL - not_null<T>

• not_null<T>
• A simple, small class

• not_null<T*> is T* except that it cannot hold nullptr

• Can be used as input to analyzers

• Minimize run-time checking

• Checking can be “debug only”

• For any T that can be compared to nullptr

• E.g. not_null<array_view<T>>

Stroustrup - Guidelines - CppCon'15 40

9/21/2015

20

To summarize

• Type and resource safety:
• RAII (scoped objects with constructors and destructors)

• No dangling pointers

• No leaks (track ownership pointers)

• Eliminate range errors

• Eliminate nullptr dereference

• That done we attack other sources of problems
• Logic errors

• Performance bugs

• Maintenance hazards

• Verbosity

• …

Stroustrup - Guidelines - CppCon'15 41

(Mis)uses of smart pointers

But ordinary pointers don’t
dangle any more

Stroustrup - Guidelines - CppCon'15 42

• “Smart pointers” are popular
• To represent ownership
• To avoid dangling pointers

• “Smart pointers” are overused
• Can be expensive

• E.g., shared_ptr

• Can mess up interfaces fore otherwise simple functions
• E.g. unique_ptr and shared_ptr

• Often, we don’t need a pointer
• Scoped objects
• We need pointers

• For OO interfaces

• When we need to change the object referred to

9/21/2015

21

(Mis)uses of smart pointers

• Consider
• void f(T*); // use; no ownership transfer or sharing
• void f(unique_ptr<T>); // transfer unique ownership and use
• void f(shared_ptr<T*>); // share ownership and use

• Taking a raw pointer (T*)
• Is familiar
• Is simple, general, and common
• Is cheaper than passing a smart pointer (usually)
• Doesn’t lead to dangling pointers
• Doesn’t lead to replicated versions of a function for different shared pointers

• In terms of tradeoffs with smart pointers, other simple “object designators” are
equivalent to T*
• iterators, references, array_view, etc.

Stroustrup - Guidelines - CppCon'15 43

(Mis)uses of smart pointers

• Don’t use ownership pointers unless you change ownership
void f(X*); // just uses X; no ownership transfer or sharing – good
void g(shared_ptr<X>); // just uses X – bad
unique_ptr<X> h(unique_ptr<X>); // just uses X – bad (give pointer back to prevent destruction)

void use()
{

auto p = make_shared<X>{};
f(p.get()); // extract raw pointer (note: pointers do not dangle)
g(p); // mess with use count (probably a mistake)
auto q = h(make_unique<X>(p.get())); // transfer ownership to just use (a mistake)

// extract raw pointer, then wrap it and copy
q.release(); // prevent destruction

}

Stroustrup - Guidelines - CppCon'15 44

9/21/2015

22

Rules, standards, and libraries

• Could the rules be enforced by the compiler?
• Some could, but we want to use the rules now

• Some compiler support would be very nice; let’s talk

• Many could not
• Rules will change over time
• Compilers have to be more careful about false positives
• Compilers cannot ban legal code

• Could the GSL be part of the standard?
• Maybe, but we want to use it now
• The GSL is tiny and written in portable C++11
• The GSL does not depend on other libraries
• The GSL is similar to, but not identical to boost:: and experimental:: components

• So they may become standard

• We rely on the standard library
Stroustrup - Guidelines - CppCon'15 45

Too many rules

• For
• Novices, experts, infrastructure, ordinary large applications, low-latency, high-reliability,

security targets, hard-real time

• You can’t remember all of those rules!

• You don’t need all of those rules

• You couldn’t learn all of those rules before writing code

• You’d hate to even look through all of those rules

• The rule set must be extensible
• you’ll never know them all

• The tools know the rules
• And will point you to the relevant ones

Stroustrup - Guidelines - CppCon'15 46

9/21/2015

23

Rule classification

• P: Philosophy

• I: Interfaces

• F: Functions

• C: Classes and class hierarchies

• Enum: Enumerations

• ES: Expressions and statements

• E: Error handling

• R: Resource management

• T: Templates and generic programming

• CP: Concurrency

• The Standard library

• SF: Source files

• CPL: C-style programming

• GSL: Guideline support library

Stroustrup - Guidelines - CppCon'15 47

Supporting sections

• NL: Naming and layout

• PER: Performance

• N: Non-Rules and myths

• RF: References

• Appendix A: Libraries

• Appendix B: Modernizing code

• Appendix C: Discussion

• To-do: Unclassified proto-rules

We are not unambitious

• Type and resource safety
• No leaks
• No dangling pointers

• No bad accesses

• No range errors
• No use of uninitialized objects
• No misuse of

• Casts
• Unions

• We think we can do it
• At scale

• 4+ million C++ Programmers, N billion lines of code

• Zero-overhead principle

Stroustrup - Guidelines - CppCon'15 48

../Documents/GitHub/CppCodingStandards/core_guidelines8.html

9/21/2015

24

We aim to change the way we write code

• That means you

• What would you like your code to look like in 5 years?
• Once we know, we can aim to achieve that
• Modernizing a large code base is not easy
• The answer is not “just like my code today”
• Think “gradual adoption” (except for brand-new code)

• Not everybody will agree what the code should look like
• Not all code should look the same
• We think there can be a common core
• We need discussion, feedback, and a variety of tools

• Help wanted!
• Rules, tools, reviews, comments
• Editors

Stroustrup - Guidelines - CppCon'15 49

Current status

• Available
• About 350 Rules (https://github.com/isocpp/CppCoreGuidelines)
• GSL for Clang, GCC, and Microsoft (https://github.com/microsoft/gsl)
• First tools: October for Microsoft; ports later (November?)
• MIT License

• We need help
• Review of rules

• More examples and refinements for existing rules

• Specialized rule sets
• For particular application areas, projects, …

• For concurrency

• For libraries

• …

• Continuous development
• “forever”

Stroustrup - Guidelines - CppCon'15 50

9/21/2015

25

The basic C++ model is now complete

• C++ (using the guidelines) is type safe and resource safe
• Which other language can claim that?

• Eliminate dangling pointers

• Eliminate resource leaks

• Check for range errors (optionally and cheaply)

• Check for nullptr (optionally and cheaply)

• Have concepts

• Why not a new C++-like language?
• Competing with C++ is hard

• Most attempts fail, C++ constantly improves

• It would take 10 years (at least)

• And we would still have lots of C and C++

• A new C++-like language might damage the C++ community

• Dilute support, divert resources, distractStroustrup - Guidelines - CppCon'15 51

Questions

• P: Philosophy

• I: Interfaces

• F: Functions

• C: Classes and class hierarchies

• Enum: Enumerations

• ES: Expressions and statements

• E: Error handling

• R: Resource management

• T: Templates and generic programming

• CP: Concurrency

• The Standard library

• SF: Source files

• CPL: C-style programming

• GSL: Guideline support library

Stroustrup - Guidelines - CppCon'15 52

Supporting sections

• NL: Naming and layout

• PER: Performance

• N: Non-Rules and myths

• RF: References

• Appendix A: Libraries

• Appendix B: Modernizing code

• Appendix C: Discussion

• To-do: Unclassified proto-rules

../Documents/GitHub/CppCodingStandards/core_guidelines8.html

9/21/2015

26

Stroustrup - Guidelines - CppCon'15 53

Coding guidelines

• Boost Library Requirements and Guidelines

• Bloomberg: BDE C++ Coding

• Facebook: ???

• GCC Coding Conventions

• Google C++ Style Guide

• JSF++: JOINT STRIKE FIGHTER AIR VEHICLE C++ CODING STANDARDS

• Mozilla Portability Guide.

• Geosoft.no: C++ Programming Style Guidelines

• Possibility.com: C++ Coding Standard

• SEI CERT: Secure C++ Coding Standard

• High Integrity C++ Coding Standard

• llvm.org/docs/CodingStandards.html

Stroustrup - Guidelines - CppCon'15 54

9/21/2015

27

Non-aims

• Create “the one true C++ subset”
• There can be no such marvel
• Core guidelines + guidelines for specific needs

• Making a totally flexible set of rules to please everybody
• Our rules are not value neutral

• Total freedom is chaos

• We want “modern C++”
• not “everything anyone ever thought was cool and/or necessary”

• Turning C++ into Java, Haskell, C, or whatever
• “If you want Smalltalk you know where to find it”

• What we want is “C++ on steroids”
• Simple, safe, flexible, and fast
• Not a neutered subset

Stroustrup - Guidelines - CppCon'15 55

Philosophy

• Attack hard problems
• Resources, interfaces, bounds, …

• Be prescriptive
• “don’t do that” is not very helpful

• Give rationale
• “because I say so” is not very helpful

• Offer machine-checkable rules
• Machines are systematic, fast, and don’t get bored

• Don’t limit generality
• For most of us most of the time

• Don’t compromise performance
• Of course

• Subset of superset
• Don’t fiddle with subtle language rules

Stroustrup - Guidelines - CppCon'15 56

